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We will show that the left and right sides of the inequality have the same limit. Consider
the function f : R → R defined by f(x) = 1

(2+2x)2
and let t ∈ N. The right Riemann sum

of f on interval [0, t] divided into tn equal subintervals is given by
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We have that
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To justify that we can change the limit order, note that the sequence RRS(f, t, n) is
increasing in n for every t, and also increasing in t for every n. Clearly, the right side of
inequality (1) also has limit 1

4
. By the Squeeze Theorem, we can say that the integral is

equal to all sums in the inequality (1). Therefore the answer is 1
4
.

■
Proof. Since limn→∞ hn = 1

4
, it is clear that the requested limit (ii) is −∞.

Assuming that parts (i) and (ii) are related, it is likely that the statement in part (i)
contains a typo and should read
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Clearly limn→∞ nhn(hn+1 − hn) = 0 and using the result in part (i) we get that
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